学校主页
师资队伍    
博士生导师
硕士生导师
正高职
副高职
中职


当前位置: 网站首页 师资队伍 正文
任小明
阅读次数: 添加时间:2020/05/09 发布:管理员

 

任小明,博士,教授,博士生导师。20009月,南京大学配位化学研究所,获理学博士学位;200010月至20025月,南京大学电子科学与工程系博士后;20025月至200311月,Research Fellow in Max-Planck Institute for Solids, Stuttgart, Germany; 200311月至200512月,JSPS researcher in Research Institute for Electronic Science, Hokkaido University, Japan200512底回国,20067月,南京工业大学理学院教授(2014年理学院更名化学与分子工程学院),20071月获博士研究生导师资格。201012月加入南京工大学材料化学工程国家重点实验室。

研究兴趣:磁、电和光等功能性分子及其膜材料结构设计、控制组装、电子和晶体结构、结构-功能相关性。

目前负责承担项目:国家自然科学基金面上项目、南京大学配位化学研究所国家重点实验室开放课题、南京工大材料化学工程国家重点实验室自主课题。

邮箱:xmren@njtech.edu.cn

代表性论文:

  1. J. Zhang, X. M. Ren* et al., ‘Multi-step structural phase transitions with novel symmetry breaking and inverse symmetry breaking characteristics in a [Ag4I6]2- cluster hybrid crystal’, Chem. Commun. 2020, 56, 462−465.

  2. G. J. Yuan, X. M. Ren* et al., ‘A rotor-like supramolecular assembly, {[K(18-crown-6)]- PbI3}, with a reversible breaking-symmetry phase transition near room temperature’, Inorg. Chem. 2020, 59, 980−983.

  3. Q. Qiao, X. Z. Wang,* X. M. Ren* et al., ‘Glowing kaolinite intercalated with N-methyl imidazole and Eu3+/Tb3+ salts and potential application in UV-to-red light conversion’, Appl. Clay Sci. 2020, 186, 105473.

  4. G. J. Yuan, X. M. Ren* et al., ‘A new kinetically preferred polymorph of 1-(4-cyano- benzyl)pyridinium bis(maleonitriledithiolato)nickelate with spin-Peierls type transition’, Cryst. Growth & Des. 2020, 20, 1829−1837.

  5. H Yang, T. Cheng,* W. A. Goddard III,* X. M. Ren*, ‘Design of a one-dimensional stacked spin Peierls system with room temperature switching from QM predictions’, J. Phys. Chem. Lett. 2019, 10, 6432−6437.

  6. Z. Y. Yao, X.  M. Ren* et al., ‘Order–disorder transformation of intercalated cations triggering huge negative thermal expansion, switchable dielectrics and ion conduction near room temperature in a 2D vanadium oxide hybrid’, J. Mater. Chem. C 2019, 7, 13243−13252.

  7. Q. Ren, H. B. Luo,* X. M. Ren* et al., ‘Design and preparation of superior proton conductor by confining tetraethylenepentamine in pores of ZIF-8 to induce further adsorption of water and carbon dioxide’, Inorg. Chem. 2019, 58, 14693−14700.

  8. X. R. Chen, X. M. Ren* et al., ‘A wide magnetic thermal-hysteresis (~55 K) above room temperature coupled to an inverse symmetry breaking phase transition in an S = ½ spin chain molecule crystal’, J. Phys. Chem. B 2018, 122, 12428−12435.

  9. J. Zhang, X. M. Ren* et al., ‘Extra water- and acid-stable MOF-801 with high proton conductivity and its composite membrane for proton exchange membrane’, ACS Appl. Mater. Interfaces 2018, 10, 28656−28663.

  10. H. B. Luo, X. M. Ren* et al., ‘An open-framework chalcogenide showing both intrinsic anhydrous and water-assisted high proton conductivity’, ACS Appl. Mater. Interfaces 2018, 10, 2619–2627.

  11. Q. Qiao, X. M. Ren,* et al., ‘Design and preparation of hybrid ferroelectric material through ethyleneglycol covalently grafted to Kaolinite’, Inorg. Chem. Front. 2017, 4, 1405–1412.

  12. H. B. Luo, X. M. Ren* et al., ‘Both dielectrics and conductance anomalies in an open-framework cobalt phosphate’, Inorg. Chem. 2017, 56, 13998−14004.

  13. M. J. Wang, X. R. Chen,* X. M. Ren* et al., ‘Phase transition, dielectrics, single-ion conductance and thermochromic luminescence of inorganic–organic hybrid of [triethylpropylammonium][PbI3]’, Inorg. Chem. 2017, 56, 9525−9534.

  14. H. B. Luo, X. M. Ren* et al., ‘Robust crystalline hybrid solid with multiple channels showing high anhydrous proton conductivity and a wide performing temperature’, Adv. Mater. 2016, 28, 1663−1667.

  15. T. Y. Chen, X. M. Ren* et al., ‘Fabrication of homogeneous, integrated and compact film of organic-inorganic hybrid Ni(en)3Ag2I4 with intense near-infrared absorbance and semiconducting feature’, Inorg. Chem. 2016, 55, 1230−1235.

  16. W. H. Ning, X. M. Ren* et al., ‘Observation of multiple structural transformations coupled with switchable magnetic and dielectric responses in an amphidynamic crystal’, J. Mater. Chem. C 2015, 3, 7906−7915.

  17. C. Xiao, X. M. Ren* et al., ‘Integrated, highly crystalline and water stable coordination framework film on various substrates and water-assisted protonic conductivity’, Chem. Commun. 2015, 51, 79477949.

  18. P. C. Guo, X. M. Ren* et al., ‘Guest-dependent thermochromic feature in metal-organic framework and its thin film on different supports’, J. Mater. Chem. A 2014, 2, 13698–13704.

  19. H. B. Duan, S. M. Zhou, X. M. Ren* et al., ‘Disorder-order transformation and significant dislocation motion cooperating with a surprisingly large hysteretic magnetic transition in a nickel-bisdithiolene spin system’, Inorg. Chem. 2013, 52, 3870–3877.

  20. G. J. Yuan, X. M. Ren* et al., ‘Influence of isotope substitution on lattice and spin-Peierls-type transition features in one-dimensional nickel bis-dithiolene spin systems’, Chem.-Asian J. 2013, 8, 611-622.

  21. S. P. Zhao, Y. N. Lu,* X. M. Ren* et al., ‘A facile and efficient strategy for the design of ferroelectric and giant dielectric hybrids via intercalating polar molecules into noncentrosymmetric layered inorganic compounds’, J. Mater. Chem. 2012, 22, 447–453.

  22. H. B. Duan, X. M. Ren* et al., ‘A low-dimensional molecular spin system with two steps of magnetic transitions and liquid crystal property’, Dalton Trans. 2011, 40, 3622–3630.

  23. S. P. Zhao and X. M. Ren*, ‘Toward design of multiple-property inorganic–organic hybrid compounds based on face-sharing octahedral iodoplumbate chains’, Dalton Trans. 2011, 40, 8261–8272.

  24. C. Pan, X. M. Ren,* W. Q. Jin* et al., ‘A highly thermally stable ferroelectric metal organic framework and its thin film with substrate surface nature dependent morphology’, J. Am. Chem. Soc. 2011, 133, 12330−12333.

  25. H. B. Duan, Q. J. Meng,* X. M. Ren* et al., ‘One-dimensional [Ni(mnt)2]--based spin-Peierls-like complexes: Structural, magnetic and transition properties’, Coord. Chem. Rev. 2010, 254, 1509−1522.

  26. H. R. Zhao, X. M. Ren* et al., ‘Larger spontaneous polarization ferroelectric inorganic-organic hybrids: [PbI3]¥ chains directed organic cations aggregation to Kagomé-shaped tubular architecture’, J. Am. Chem. Soc. 2010, 132, 18−19.

  27. Z. F. Tian, X. M. Ren* et al., ‘Two spin-Peierls-like compounds exhibiting divergent structural features, lattice compression, and expansion in the low-temperature phase’, J. Phys. Chem. B 2009, 113, 8278−8283.

  28. X. M. Ren,* Y. X. Sui et al., ‘Observation of intermolecular charge transfer in a quasi-1D molecular alloy system’, J. Phys. Chem. A 2008, 112, 8009−8014.

  29. X. M. Ren,* T. Nakamura,* et al., ‘Pressure effect on spin-Peierls-like transition in quasi-1D spin systems [RBzPy][Ni(mnt)2]’, Chem. Phys. Lett. 2007, 439, 318−322.

  30. X. M. Ren,* T. Nakamura* et al., ‘Design of a magnetic bistability molecular system constructed by H-Bonding and pp stacking interactions’, Inorg. Chem. 2006, 45, 2229−2234.

  31. X. M. Ren,* T. Nakamura,* et al., ‘Structural and magnetic investigations for the doping effect of nonmagnetic impurity on the spin-Peierls-like transition in a quasi-one- dimensional magnet: 1-(4’-nitrobenzyl)pyridinium bis(maleonitriledithiolato)nickelate’, J. Phys. Chem. B 2006, 110, 7671–7677.

  32. X. M. Ren,* T. Nakamura* et al., ‘Quasi-one-dimensional molecular magnets based on derivatives of (fluorobenzyl)pyridinium with the [M(mnt)2] monoanion (M = Ni, Pd or Pt; mnt2− = maleonitriledithiolate): Syntheses, crystal structures and magnetic properties’, Dalton Trans. 2006, 1988–1994.

  33. X. M. Ren,* T. Nakamura,* et al., ‘Structural phase transition driven by spin-lattice interaction in a quasi-one-dimensional spin system of [1-(4’-Iodobenzyl)pyridinium]- [Ni(mnt)2], J. Phys. Chem. B 2005, 109, 16610–16615.

  34. X. M. Ren,* T. Nakamura* et al., ‘Strong antiferromagnetic exchange interactions in quasi-one-dimensional (quasi-1D) compounds based on [Pd(mnt)2] anions: Crystal structures, magnetic properties, and spin dimer analyses’, Synth. Met. 2005, 150, 57–61.

  35. X. M. Ren, R. K. Kremera,* Q. J. Meng, ‘Investigation of the magneto-structural phase transition in [1-benzyl-4-aminopyridinium][bis(maleonitriledithiolato)nickelate]’, J. Mag. Mag. Mater. 2004, 272–276, 924–926.

  36. X. M. Ren,* Q. J. Meng,* P. H. Wu* et al., ‘Ionic pair complexes with well-separated columnar stack structure based on [Pt(mnt)2]- ions showing unusual magnetic transition: syntheses, crystal structures, and magnetic properties’, Inorg. Chem. 2004, 43, 2569−2576.

  37. X. M. Ren, S. Z. Yang,* Q. J. Meng,* P. H. Wu* et al., ‘Syntheses, crystal structures, ferroelectrics and magnetic properties of [R-BzPy]2[Cu(mnt)2] complexes ([R-BzPy]+ = 1-(4’-R-benzyl)pyridinium, R = NO2 or Br; mnt2- = maleonitriledithiolate)’, Dalton Trans. 2003, 1345−1351.

  38. X. M. Ren,* Song Gao* et al., ‘Spontaneous magnetization below 7.7 K based on an extended 3-D H-bonding network material: synthesis, crystal structure and magnetic properties’, J. Chem. Soc., Dalton Trans. 2002, 3915–3918.

  39. X. M. Ren, Q. J. Meng,* et al., ‘Unusual magnetic property associated with dimerization within a nickel tetramer’, Inorg. Chem. 2002, 41, 5931−5933.

  40. X. M. Ren, Q. J. Meng,* et al., ‘Unusual magnetic properties of one-dimensional molecule-based magnets associated with a structural phase transition’, Inorg. Chem. 2002, 41, 5686–5692.

 

地址:南京浦口区浦珠南路30号 邮编:211880 电话:025-58139535、9536、9537 邮箱:chem@njtech.edu.cn
Copyright (C) 2019南京工业大学化学与分子工程学院 All rights reserved.
总共访问: 今日访问: