学校主页
网站首页    
学院新闻
学工动态
通知公告
媒体化学
学术前沿
党员之家
先锋行动
学术动态


当前位置: 网站首页 学术动态 正文
毛建友教授课题组在Nat. Commun.发表研究论文
阅读次数: 添加时间:2021/11/18 发布:

Catalytic enantioselective reductive domino alkyl arylation of acrylates via nickel/photoredox catalysis

Pengcheng Qian1,5, Haixing Guan1,2,5, Yan-En Wang3, Qianqian Lu1, Fan Zhang1, Dan Xiong1, Patrick J. Walsh 4*, Jianyou Mao1*

1 Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China

2 Experimental Center, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, PR China

3 College of Science, Hebei Agricultural University, Baoding, PR China

4 Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States

5 These authors contributed equally: Pengcheng Qian, Haixing Guan

Abstract: Nonsteroidal anti-inflammatory drug derivatives (NSAIDs) are an important class of medications. Here we show a visible-light-promoted photoredox/nickel catalyzed approach to construct enantioenriched NSAIDs via a three-component alkyl arylation of acrylates. This reductive cross-electrophile coupling avoids preformed organometallic reagents and replaces stoichiometric metal reductants by an organic reductant (Hantzsch ester). A broad range of functional groups are well-tolerated under mild conditions with high enantioselectivities (up to 93% ee) and good yields (up to 90%). A study of the reaction mechanism, as well as literature precedence, enabled a working reaction mechanism to be presented. Key steps include a reduction of the alkyl bromide to the radical, Giese addition of the alkyl radical to the acrylate and capture of the α-carbonyl radical by the enantioenriched nickel catalyst. Reductive elimination from the proposed Ni(III) intermediate generates the product and forms Ni(I).

Nat. Commun. 2021, 12, 6613  (2021年影响因子: 14.919).

论文链接:https://www.nature.com/articles/s41467-021-26794-8?utm_source=xmol&utm_medium=affiliate&utm_content=meta&utm_campaign=DDCN_1_GL01_metadata#citeas






地址:南京浦口区浦珠南路30号 邮编:211880 电话:025-58139535、9536、9537 邮箱:chem@njtech.edu.cn

Copyright © 2019 南京工业大学化学与分子工程学院 All Rights Reserved.

总共访问: 今日访问: