化学限域的电化学测量
时间:11月12日(周六)下午15点
腾讯会议:567 361 182
报告人简介:
龙亿涛,南京大学生命分析化学国家重点实验室教授,国家杰青(2011),教育部国家级人才特聘教授(2012)。1989年本科毕业于山东大学,在南京大学获得硕士(1996)、博士(1998)学位。1999-2001年在德国Heidelberg大学进行博士后工作,其后分别在法国国立高等巴黎化学学院 (ENSCP)、加拿大Saskatchewan和Alberta大学、美国加州大学Berkeley分校进行研究工作。研究方向包括纳米孔道单分子分析、单纳米粒子光谱电化学、SIMS电化学、电化学限域界面超灵敏检测和环境污染物现场快速检测等。现为Chemical Science、Research、高等学校化学学报副主编;Chemical Reviews、ChemElectroChem、Theranostics和Microchimica Acta编委,国际电化学会会士。曾获上海市自然科学一等奖,中国分析测试协会科学技术特等奖,梁树权分析化学基础研究奖。
报告摘要:
The development of confined electrochemistry by miniaturing the critical sensing area is one of the great progress in electrochemistry. Electrochemically confined measurement via confined interface offers a confined sensing area, whose dimension is comparable with single entities (e.g. single molecules, single particles, single cells) and thus could be used for ultrasensitive sensing of both electroactive and non-electroactive species.1,2 To meet the urgent demand of sensitivity and selectivity for single molecule sensing, a single biomolecule interface is constructed in the electrochemically confined nanopore (aerolysin nanopore). Besides a narrow geometrical construction, charged amino acid residues in the inner channel of aerolysin nanopore provide the possibility to further improve the sensitivity and selectivity of nanopore sensor. We commanded individual molecules at a nano interface via site-directed mutagenesis that enables high resolution for the single biomolecule detection. The sensitivity and selectivity for various target molecules could be flexibly modulated by the choice of mutation site and amino acid residues. We also employed the aerolysin nanopore as a useful toolbox for developing the frequency-energy spectra to successfully characterize each type of non-covalent interaction between every single residue and the carriers inside membrane proteins.3 More importantly, single molecule interface provides a confinement for the single molecule reaction which offers the possibility to study reaction kinetics in high temporal resolution. Moreover, by combining with advanced optical technology such as fluorescence or plasmonic technology, it is possible to construct an integrated single molecule interface for multi-element readouts, which is expected to further provide the rich structural information of a single analyte.4-6
References
1. Y.-L. Ying., Y.-T. Long. J. Am. Chem. Soc. 2019, 141, 15720-15729.
2. S.-M. Lu, Y.-Y. Peng, Y.-L. Ying, Y.-T. Long. Anal. Chem. Anal. Chem. 2020, 92, 5621-5644.
3. Z.-L. Hu, Y.-L. Ying, M.-Z. Hu, Y.-L. Ying, Y.-T. Long. Angew. Chem. Int. Ed. 2021, 60, 14738-14749.
4. R.-J. Yu, Y.-L. Ying, R. Gao, Y.-T. Long. Angew. Chem. Int. Ed. 2019, 58, 3706-3714.
5. X.-Y. Li, Y.-L. Ying, X. X. Fu. Y.-J. Wan, Y.-T. Long. Angew. Chem. Int. Ed. 2021, 133 24582-24587.
6. M.-Y. Li, Y.-L. Ying, J. Yu, S.-C. Liu, Y.-Q. Wang, S. Li, Y.-T. Long. JACS Au 2021, 1, 967–976